Stabilized Local Non-reflecting Boundary Conditions for High Order Methods
نویسندگان
چکیده
Using the framework introduced by Rowley and Colonius [14] we construct a discretely non-reflecting boundary condition for the one-way wave equation spatially discretized with an explicit fourth order centered difference scheme. The boundary condition, which can be extended to arbitrary order accuracy, is shown to be GKSstable. We continue by deriving discretely non-reflecting boundary conditions for systems in two dimensions using the results for the scalar one dimensional case. TRITA-NA-0325 • ISSN 0348-2952 • ISRN KTH/NA/R--03/25--SE
منابع مشابه
Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary conditions
Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...
متن کاملA MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملThe Study of Some Boundary Value Problems Including Fractional Partial Differential Equations with non-Local Boundary Conditions
In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations (FPDE) with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کامل